EJEMPLO 1
Los circuitos RL son aquellos que contienen una bobina (inductor) que tiene auto inductancia, esto quiere decir que evita cambios instantáneos en la corriente. Siempre se desprecia la auto inductancia en el resto del circuito puesto que se considera mucho menor a la del inductor.

Para un tiempo igual a cero, la corriente comenzará a crecer y el inductor producirá igualmente una fuerza electromotriz en sentido contrario, lo cual hará que la corriente no aumente. A esto se le conoce como fuerza contra electromotriz.
Esta fem está dada por: V = -L (inductancia) dI/dt
Debido a que la corriente aumentará con el tiempo, el cambio será positivo (dI/dt) y la tensión será negativa al haber una caída de la misma en el inductor.
Según kirchhoff: V = (IR) + [L (dI / dt)]
IR = Caída de voltaje a través de la resistencia.
Esta es una ecuación diferencial y se puede hacer la sustitución:
x = (V/R) - I es decir; dx = -dI
Sustituyendo en la ecuación: x + [(L/R)(dx/dt)] = 0
dx/x = - (R/L) dt
Integrando: ln (x/xo) = -(R/L) t
Despejando x: x = xo e -Rt / L
Debido a que xo = V/R
El tiempo es cero
Y corriente cero V/R - I = V/R e -Rt / L
I = (V/R) (1 - e -Rt / L)
El tiempo del circuito está representado por
= L/R
I = (V/R) (1 - e - 1/
)
Donde para un tiempo infinito, la corriente de la malla será I = V/R. Y se puede considerar entonces el cambio de la corriente en el tiempo como cero.
Para verificar la ecuación que implica a
y a I, se deriva una vez y se reemplaza en la inicial: dI/dt = V/L e - 1/
Se sustituye: V = (IR) + [L (dI / dt)]
V = [ (V/R) (1 - e - 1/
)R + (L V/ L e - 1/
)]
V - V e - 1/
= V - V e - 1/
EJEMPLO 2
Un circuito RL se conecta a un generador de señales cuadradas, podemos observar en un osciloscopio el proceso de establecimiento y caída de la corriente en el circuito. Una experiencia análoga la efectuamos para verificar el proceso de carga y descarga de un condensador a través de una resistencia.

Como se ve en la figura, durante el primer semiperiodo de la señal, la fem tiene un valor constante e igual a V0. Se establece la corriente en el circuito durante un tiempo P/2.
La intensidad i en el intervalo 0<t<P/2 es

Se calcula la intensidad final i1 en el instante t=P/2. En este instante, la fem se hace cero, la corriente cae en el circuito.
La corriente i en el intervalo P/2<t<P es,

Se calcula la intensidad final i2 en el instante t=P
La corriente i en el intervalo P<t<3P/2 es, se obtiene integrando no es entre los límites 0 y i, sino entre la intensidad remanente i2 e i.

Calculamos la intensidad final i3 en el instante t=P+P/2. Y así, sucesivamente.
Establecimiento de una corriente en un circuito
Cuando se aplica una fem V0 a un circuito cerrando un interruptor, la corriente no alcanza instantáneamente el valor V0/R dado por la ley de Ohm, sino que tarda un cierto tiempo, teóricamente infinito, en la práctica, un intervalo de tiempo que depende de la resistencia.
La razón de este comportamiento hay que buscarla en el papel jugado por la autoinducción L que genera una fem que se opone al incremento de corriente.

En la figura, se muestra un circuito formado por una batería, una resistencia y una autoinducción. Se conecta la batería y la intensidad i aumenta con el tiempo.
Para formular la ecuación del circuito sustituimos la autoinducción por una fem equivalente. Medimos la diferencia de potencial entre los extremos de cada uno de los tres elementos que forman el circuito. Se cumplirá que
Vab+Vbc+Vca=0

Integrando, hallamos la expresión de i en función del tiempo con las condiciones iniciales t=0, i=0.


No hay comentarios:
Publicar un comentario